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Stokes flow is fluid flow where advective in-
ertial forces are negligibly small compared to
viscous forces. This is a typical situation on
a microscale or when the fluid velocity is very
small. Stokes flow is a good and important
approximation for a number of physical prob-
lems such as sedimentation, modeling of bio-
suspensions, construction of efficient fibrous fil-
ters, developing energy efficient micro-fluidic de-
vices (e.g. mixers), etc. Efficient numerical solu-
tion of Stokes flow requires unstructured meshes
adapted to geometry and solution as well as ac-
curate discretization methods capable of treating
such meshes. We developed a new mimetic finite
difference (MFD) method that remains accurate
on general polygonal meshes that may include
non-convex and degenerate elements [1].

Triangular meshes allow one to model com-
plex geometric objects. However, compared to
quadrilateral and more general polygonal meshes,
the triangular meshes with the same resolution do
not provide optimal cover of the space, which
result in larger algebraic problems. The MFD
method was designed to provide accurate ap-
proximation of differential operators on general
meshes. These meshes may include degenerate
elements, as in adaptive mesh refinement meth-
ods, non-convex elements, as in moving mesh
methods, and even elements with curved edges
near curvilinear boundaries.

The incompressible Stokes equations are

−div(µ(∇u+(∇u)T ) = F−∇p

divu = 0

where u is the fluid velocity, p is the pressure,
F is the given external force, and µ is the fourth-
order symmetric positive definite tensor viscosity.

Since µ is a tensor, the developed MFD method
can be applied to problems of linear elasticity that
can be written in a similar form.

The MFD method has many similarities with
a low-order finite element (FE) method. Both
methods try to preserve fundamental properties
of physical and mathematical models. Various
approaches to extend the FE method to non-
simplicial elements have been developed over the
last decade. Construction of basis functions for
such elements is a challenging task and may re-
quire extensive analysis of geometry. Contrary
to the FE method, the MFD method uses only
boundary representation of discrete unknowns to
build stiffness and mass matrices. Since no exten-
sion inside the mesh element is required, practical
implementation of the MFD method is simple for
general polygonal meshes.

Streamlines for the flow generated by three
self-propelled bacteria (colored ellipses) moving
counterclockwise in a closed box with no-slip
conditions on the walls. On blue parts of the el-
lipses fluid sticks to bacteria, on red parts fluid is
pushed back to generate propulsion. Calculations
were performed with the mimetic finite difference
method on a polygonal mesh obtained by inter-
section of a square 50×50 mesh with ellipses.
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The MFD method is flexible in selecting dis-
crete unknowns. In [1], the velocity is approx-
imated at mesh vertices and the velocity flux is
approximated at mesh edges. The pressure is ap-
proximated by one constant (e.g. average) on
each mesh element. This set of discrete velocity
unknowns is abundant and will be reduced in the
future. On triangular meshes, the MFD method
coincides with the FE method that uses the same
set of discrete unknowns. The numerical exper-
iments in [1] have shown the second-order con-
vergence for the velocity variable and the first-
order for the pressure on unstructured polygonal
meshes. The convergence rates have remained the
same in experiments with anisotropic tensor µ.

Example of an adapted mesh in Stokes flow with a
singular point force in the middle of the domain.
The mesh consists of regular quadrilateral ele-
ments and degenerate elements with 5, 6 and 8
edges. The MFD method uses the same construc-
tion for all these elements.

Like the MFD method for the diffusion prob-
lem [2, 3], the novel MFD method [1] is again
a parametric family of methods with equivalent
properties. In numerical experiments, we have

used a particular member of this family. Anal-
ysis of this family is an open question. The an-
swer to this question may result in new adaptive
methods. In addition to traditional mesh refine-
ment (h-adaptation) and enrichment of discretiza-
tion space (p-adaptation), the MFD method pro-
vides a basis for selecting an optimal discretiza-
tion method.

The novel MFD method has been developed
for elements with straight edges. Applying ideas
from [2], it will be possible to extend it to meshes
with curved edges. The ideas described in the
last two paragraphs will be the topics of future
research.

A similar MFD method has been developed in-
dependently by Lourenco Beirão da Veiga and
Marco Manzini [1].
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